

 All rights
 Printed in Great Britain

 5
 0040-4039/97 \$17.00 + 0.00

PII: S0040-4039(97)01194-5

Absolute Stereostructure of Callystatin A, a Potent Cytotoxic Polyketide from the Marine Sponge, *Callyspongia truncata*

Nobutoshi Murakami, Weiqi Wang, Masashi Aoki, Yasuhiro Tsutsui, Kouichi Higuchi, Shunji Aoki, and Motomasa Kobayashi*

Faculty of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565, Japan

Abstract: The unidentified configurations at C₅ and C₁₀ in callystatin A (1), a potent cytotoxic polyketide from the marine sponge *Callyspongia truncata*, were determined to be *R*, *R* by comparing the circular dichroism spectrum of 1 with those of two model compounds 2 and 3. Compounds 2 and 3 were synthesized by using *E*-selective Wittig olefination at the C6-C7 position as a key reaction. @ 1997 Elsevier Science Ltd.

In the course of our search for bioactive substances from marine organisms,¹) we have isolated a potent cytotoxic polyketide named callystatin A (1) from the marine sponge, *Callyspongia truncata*, and elucidated the plane structure including the absolute configurations of the C₁₆-C₂₂ β -hydroxyketone part.²) The related antitumor antibiotics (*e.g.*, leptomycin,³) kazusamycin,⁴) anguinomycin,⁵) and leptofuranin⁶) have been isolated from actinomyces and their plane structures elucidated. In order to reveal the absolute configurations at C₅ and C₁₀ in callystatin A (1), we synthesized two model compounds 2 and 3 depicted in Chart 1 and compared their circular dichroism (CD) spectra as well as NMR data with those of 1 in detail. In this paper, we report the absolute stereostructure of callystatin A (1).

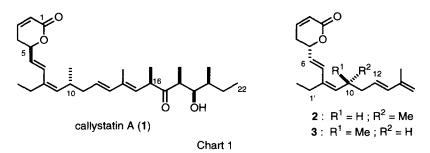
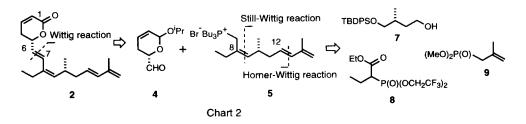
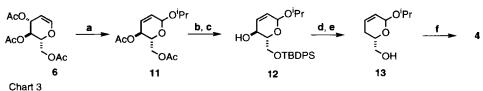
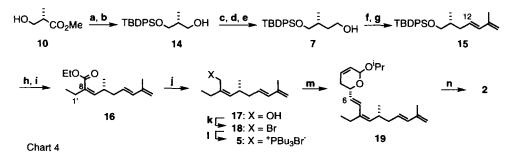




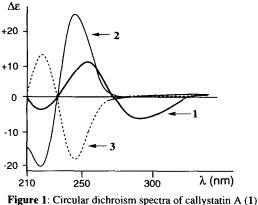
Chart 2 outlines the retrosynthetic analysis for 55,10*R* model compound 2.⁷) The construction of the C6-C7 double bond as a key step in the synthesis of 2 was accomplished by high *E*-selective Wittig olefination⁸) between the aldehyde 4 and the allylic tributylphosphonium bromide 5. The aldehyde 4, whose acetal moiety is easily converted to α , β -unsaturated δ -lactone, could be prepared from tri-*O*-acetyl-D-glucal (6) as shown in Chart 3. Then, both the C8-C9 and C12-C13 double bonds in 5 were disconnected into three synthesis 7, 8, and 9. The optically active alcohol 7 was accessible by one-carbon homologation of commercially available methyl (*S*)-3-hydroxy-2-methyl-propionate (10). Additionally, the two phosphonates

 $8^{9)}$ and $9^{10)}$ could be prepared from ethyl 2-bromobutanoate and 3-bromo-2-methyl-1-propene, respectively. The other model compound 3 could also be synthesized from the enantiomer of 10 in a similar fashion. The execution of this strategy proceeded as follows.


The synthesis of the aldehyde 4 is shown in Chart 3. Thus, acid treatment of tri-O-acetyl-D-glucal (6) in the presence of i propanol afforded an acetal 11, which was further converted to 12 by LiOH-catalyzed deacetylation and selective protection of a primary hydroxyl group. The mesylate of 12 was reduced by Super-Hydride ^R (LiBEt3H) and successively deprotected to furnish a primary alcohol 13 in overall yield of 86% for six steps. The alcohol 13 was converted to the aldehyde 4 by Swern oxidation quantitatively.

Reagents and conditions: a) ⁱPrOH, BF₃ • OEt₂, benzene, 95%, b) LiOH (cat), MeOH, quant., c) TBDPSCI, imidazole, CH₂Cl₂, 99%, d) MsCI, Et₃N, CH₂Cl₂; LiB(Et)₃H, THF, reflux, 2 steps 92%, e) TBAF, THF, quant., f) (COCI)₂, DMSO; Et₃N, CH₂Cl₂, -78°C, quant.

Synthesis of the 5*S*, 10*R* model compound 2 *via* the allylic tributylphosphonium bromide 5 is depicted in Chart 4. Protection of a hydroxy group in 10 and subsequent reduction gave an alcohol 14 in two steps 95%, which was then converted to 7 by one-carbon homologation through three steps in 90% yield. Tetrapropylammonium perruthenate (TPAP)-catalyzed oxidation of 7 followed by Horner-Wittig reaction with 9 afforded 12*E*-diene 15 stereoselectively in two steps 74% yield. Removal of the TBDPS group and subsequent Swern oxidation of 15 gave an aldehyde, which was successively subjected to Still-Wittig reaction¹¹) with 8 to provide 8*Z*-triene 16 and 8*E*-isomer in a ratio of 16:1 in three steps 81% yield. The geometry of the C₈-C₉ double bond in 16 was confirmed to be *Z* by NOE enhancement between H-9 and H₂-1'. Then, the bromide 18 was generated from 16 upon DIBAL reduction and subsequent bromination *via* an alcohol 17. The condensation of the aldehyde 4 and the dimethyl phosphonate, which was prepared from 18 and P(OMe)₃, was examined under several basic conditions (*n*BuLi, NaH, *etc.*) to give only decomposed products. On the other hand, the corresponding triphenylphosphorus ylide was converted into a coupled product without *E* selectivity.


Accordingly, the allylic tributylphosphorus ylide 5^{8} was applied to preparation of 19. Reported conditions⁸ (*e.g.*, anhydrous THF as a solvent; *n*BuLi, *t*BuOK, *etc.*, as a base) did give the desired 6*E*-olefin 19 exclusively albeit in low yield (0~25%). Upon further detailed examination, it was found that

Reagents and conditions: a) TBDPSCI, imidazole, CH_2Cl_2 , b) LiBH₄, THF, reflux, 2 steps 95%, c) (COCl)₂, DMSO; Et₃N, CH_2Cl_2 , -78°C, d) BrPh₃PCH₃, ⁿBuLi, THF, 0°C, e) BH₃•OEt₂, THF, -15 to 0°C; 30% H₂O₂, 1N NaOH, 3 steps 90%, f) TPAP(cat), NMO, CH_2Cl_2 , 90%, g) 9, LiN(SiMe₃)₂, THF, -78°C to rt, 82%, h) TBAF, THF, 90%, i) (COCl)₂, DMSO; Et₃N, CH_2Cl_2 , -78°C; 8, KN(SiMe₃)₂, 18-crown-6, THF, -78°C to rt, 2 steps 90%, j) DIBAL-H, CH_2Cl_2 , -78°C, quant., k) CBr₄, Ph₃P, CH₃CN, 82 %, l) ⁿBu₃P, CH₃CN. m) 4, LiCH₂S(O)CH₃ toluene, -78°C to rt, 2 steps 77%.

LiCH₂S(O)CH₃ treatment of 4 and 5 in toluene furnished 19 in the most favorable yield of 60% without loss of *E*-selectivity. Finally, 19 was subjected to catalytic acid hydrolysis and subsequent Ag₂CO₃-Celite oxidation in one pot to furnish the 10*R* lactone 2 in 77% yield. Diastereomeric 5*S*,10*S* model compound 3 was similarly synthesized using methyl (*R*)-3-hydroxy-2-methyl propionate in place of its *S*-isomer 10.

Detailed comparison of the ¹H-NMR data¹²) for callystatin A (1) with those for the two model

and the model compounds 2 and 3 in MeOH

compounds 2 and 3 brought about no conclusive difference in relative stereochemistry at C5 and C10 in 1. From intensive analysis of the CD spectra of 1, 2, and 3 illustrated in Fig.1, the following conclusions were obtained: 1) the strong split Cotton effects at 243 nm and 221 nm due to the interaction of π - π * transition of the two conjugated diene chromophores clearly indicated 10*R* configuration in 1; 2) the assumed CD spectrum of antipode (5*R*, 10*R*) of 3 is similar to that of 1. Especially, 5*S*,10*R* model compound 2 showed strong negative $\Delta \varepsilon$ value at 210 nm, while 1 and 3 showed no $\Delta \varepsilon$ value at 210 nm.¹³

The two model compounds 2 and 3 having the α , β -unsaturated δ -lactone and two conjugated diene moieties common to callystatin A (1) exhibited moderate cytotoxicity against KB cells at IC₅₀ 0.01 µg/ml, respectively. Therefore, it should be of interest to learn how the configurations at C-5 and/or the β -hydroxyketone portion with four asymmetric centers are associated with the extremely potent cytotoxicity of 1.

In summary, the whole absolute configuration of callystatin A (1) was elucidated as 5*R*, 10*R*, 16*R*, 18*S*, 19*R*, 20*S*. Work on total synthesis of callystatin A (1), aiming to confirm its structure and reveal the structure-activity relationship, is currently in progress.

Acknowledgment The authors are grateful to the Ministry of Education, Science, Sports, and Culture of Japan and the Naito Foundation for financial support.

References and Notes

- a) Kobayashi, M.; Wang, W.; Ohyabu, N.; Kurosu, M.; Kitagawa, I. Chem. Pharm, Bull., 1995, 43, 1598-1600; b) Kobayashi, M.; Aoki, S.; Gato, K.; Kitagawa, I. Chem. Pharm. Bull., 1996, 44, 2142-2149.
- 2. Kobayashi, M.; Higuchi, K.; Murakami, N.; Tajima, H.; Aoki, S. Tetrahedron Lett., 38, 2859-2862(1997).
- 3. Hamamoto, T.; Seto, H.; Beppu, T. J. Antibiotics, 1983, 36, 646-650.
- Komiyama, K.; Okada, K.; Oka, H.; Tomisaka, S.; Miyano, T.; Funayama, S. Umezawa, I.; J. Antibiotics, 1985, 38, 220-223.
- 5. Hayakawa, Y.; Sohda, K.; Shin-ya, K.; Hidaka, T.; Seto H. J. Antibiotics, 1995, 48, 954-961.
- 6. Hayakawa, Y.; Sohda, K.; Seto H. J. Antibiotics, 1996, 49, 980-984.
- 7. Numbering of each compound is accordance with that of the model compound 2 to avoid confusion.
- 8. Tamura, R.; Saegusa, K.; Kakihana, M.; Oda, D. J. Org. Chem., 1988, 53, 2723-2728.
- 9. Compound 8 was prepared from ethyl 2-bromobutanoate according to ref. 11.
- 10. Buchi, G.; Wust, H. Helv. Chim. Acta, 1979, 62, 2661-2672.
- 11. Still, W. C.; Gennari, C. Tetrahedron Lett., 1983, 24, 4405-4408.
- 12. Callystatin A (1): CD (MeOH) λ max nm ($\Delta\epsilon$): 299 (-6.1), 270 (0), 251 (+11.6), 233 (0), 222 (-4.2), 210 (-0.9). ¹H-NMR (500 MHz, C₆D₆) δ : 6.61 (d, J=16 Hz, H-7), 6.06 (d, J=16, H-13), 5.90 (ddd, J=10, 2, 10.1) 5.5, H-3), 5.81 (dd, J=10, 2, H-2), 5.62 (dt, J=16, 8, H-12), 5.55 (dd, J=16, 6.5, H-6), 5.25 (d, J=10, H-15). 5.23 (d, J=10, H-9), 4.43 (m, H-5), 3.76 (t-like, J=ca. 6, H-19), 3.55 (dq, J=10, 7, H-16), 2.84 (dd, J=7, 5.5, H-18), 2.67 (m, H-10), 2.20 (m, H₂-4), 2.13 (m, I'-H₂), 2.07 (dd, J=6, 8, H-11), 1.77 (s, 14-CH3), 1.50 (m, H2-21), 1.30 (m, H-20), 1.14 (d, J=7, 16-CH3), 1.07(t, J=7.5, 2'-H3), 1.04 (d, J=7, 18-CH3), 0.98 (d, J=7, 10-CH3), 0.97 (d, J=6.5, 20-CH3), 0.87 (t, J=7.5, H3-22). **2**: FAB MS m/z: 287 (M+H)⁺. High-FAB MS: Obsd; m/z: 287.201. Calcd for C₁₉H₂₇O₂; m/z 287.201. IR cm⁻¹ (KBr) 1730. UV λmax (MeOH) nm(ε): 230 (28800). CD (MeOH) λmax nm (Δε): 244 (+25.3), 231 (0), 222 (-20.3), 210 (-15.2). ¹H-NMR (C6D6) δ : 6.58 (d, J=16 Hz, H-7), 6.20 (d, J=16, H-13), 5.87 (ddd, J=10, 10) 2, 5.5, H-3), 5.82 (dd, J=10, 2, H-2), 5.61 (dt, J=16, 7.5, H-12), 5.57 (dd, J=16, 6.5, H-6), 5.24 (d, J=10, H-9), 4.96, 4.91 (both s, H-15), 4.41 (m, H-5), 2.68 (m, H-10), 2.20 (m, H2-4), 2.13 (q, J=7.5, 1'-H2), 2.07 (dd, J=7, 7.5, H-11), 1.78 (s, 14-CH3), 1.06 (t, J=7.5, 2'-H3), 1.00 (d, J=7, 10-CH3). 3: FAB MS m/z : 287 (M+H)⁺. High-FAB MS: Obsd; m/z: 287.202. Calcd for C19H27O2; m/z 287.201. IR cm⁻¹ (KBr) 1730. UV λmax (MeOH) nm(ε): 230 (29000). CD (MeOH) λmax nm (Δε): 244 (-17.8), 231 (0), 222 (+13.8), 210 (+2.2). ¹H-NMR (C₆D₆) δ: 6.60 (d, J=16 Hz, H-7), 6.24 (d, J=16, H-13), 5.88 (ddd, J=10, 2, 5.5, H-3), 5.82 (dd, J=10, 2, H-2), 5.65 (dt, J=16, 7.5, H-12), 5.57 (dd, J=16, 6.5, H-6), 5.25 (d, J=10, H-9), 4.99, 4.94 (both s, H-15), 4.41 (m, H-5), 2.70 (m, H-10), 2.19 (m, H₂-4), 2.14 (q, J=7.5, 1'-H2), 2.09 (dd, J=7, 7.5, H-11), 1.84 (s, 14-CH3), 1.06 (t, J=7.5, 2'-H3), 0.99 (d, J=7, 10-CH3).
- 13) We have also synthesized model compounds 20 and 21. The difference of CD amplitude between 2 and antipode of 3 is well explained as CD amplitude of 20 (or 21). 20: CD (MeOH) λmax nm (Δε): 244 (+3.7), 228 (0), 210 (-4.9). 21: CD (MeOH): 244 (+3.0), 228 (0), 210 (-4.8).

(Received in Japan 15 May 1997; revised 6 June 1997; accepted 9 June 1997)